Great and Little Shelford CE (A) Primary School Calculation Policy

Year 1Addition

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-whole model.	7 (9) (9) Use part whole model. Use cubes to add two numbers together as a group or a bar.	 Use picture to add two numbers together as a group or in a bar.	$\begin{aligned} & 4+3=7 \\ & 3+4=7 \\ & 7=4+3 \\ & 7=3+4 \end{aligned}$ Use the part-part whote diagram as shown above to move into the abstract.
Starting at the bigger number and counting on.	Start with the larger number on the bead string and then count on the smaller number I by I to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump. to find the answer.	$12+5=17$ Place the larger number in your head and count on the smaller number to find the answer.
Regrouping to make 10 . This is an essential skill for cotumn addition later.	$9+5=14$ Start the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the partwhote model to make 10 . $9+5=14$ (1) 4	$9+5=14$ If I am at nine, how many more do I need to make 10 . How many more do I add on now?
Represent and use number bonds and related subtraction facts within 20.	2 more than 5.		Emphasis should be on the language: 'I more than 5 is equal to 6.' ' 2 more than 5 is 7.' ' 8 is 3 more than 5.'

Great and Little Shelford CE（A）Primary School

Calculation Policy

Year 2 Addition

Objective	Concrete	Pictorial	Abstract
Adding multiples of 10 ．		$\begin{aligned} 3 \text { tens }+5 \text { tens } & =\square \text { tens } \\ 30+50 & =\square \end{aligned}$ Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 80=30+50 \\ & 40+\square=60 \end{aligned}$
Using known number facts． Part－whote．		$\begin{gathered} \text { 20 } \square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+9=20 & 20-9=\square \\ 9+\square=20 & 20-\square=9 \end{array}$
Using known facts．			$\begin{aligned} & 3+4=7 \\ & \text { leads to } \\ & 30+40=70 \\ & \text { leads to } \\ & 300+400=700 \end{aligned}$
Bar model．	$0_{3+4=7}^{000} 000$		23 24 $23+24=27$

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 2 Addition

Objective	Concrete	Pictorial	Abstract
Add a 2-digit number and ones.	$17+5=22$ Use tens frames to make 'magic ten'. Children explore the pattern: $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part whole and number line to model.	$17+5=22$ Explone related facts:$\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$22 17 5
Add a 2-digit number and tens.	$25+10=35$ Explore that the ones digit does not change.	$27+30=57$	$\begin{aligned} & 27+10=37 \\ & 37+10=47 \\ & 47+10=57 \end{aligned}$
Add two 2-digit numbers.	Moodel using Base 10, place value counters and Numicon.	Use a number line and bridge ten using part-whote if necessary.	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1 -digit numbers.	Combine to make ten first if possible, or bridge 10 then add the third digit.	Regroup and draw representation. $\begin{aligned} & 8008 \\ & 8808 \end{aligned} 80=12$	$\begin{aligned} 7+2+3 & =10+2 \\ & =12 \end{aligned}$ Combine the two numbers that make/bridge ten then add on the third.

Great and Little Shelford CE (A) Primary School

Calculation Policy

Xear 3 Addition

Great and Little Shelford CE (A) Primary School

Calculation Policy

Y ear 4, 5, 6 Addítion

Objective	Concrete	Pictorial	Abstract
YL - Add numbers with up to 4 digits.	Children continue to use Base 10 or place value counters to add, exchanging ten ores for a ten and ten tens for a huidred and ten hundreds for a thousand.	Draw representations using a place value grid.	Continue from previous work to exchange hundreds as well as tens. $\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$
Y5 - Add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As Year 4. Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$tens ones tentrs hundredes 00 000 00000 00000 0 0000 00 000 0000 00060 000	Relate to money and measures.
Y6 - Add several numbers increasing complexity. Including adding money, measure and decimals with different numbers of decimal points.	$A_{s} Y_{\text {ear }} 5$.	$A_{s} Y_{\text {ear }} 5$.	$\begin{aligned} & 81,059 \\ & 3,668 \\ & 15,301 \\ &+20,551 \\ & 120,579 \\ & \hline 1,1,1 \\ & \\ & \text { Add zeros for place } \\ & \text { holders. } \\ & \hline \end{aligned}$

Great and Little Shelford CE (A) Primary School

Calculation Policy
Year 1Subtraction
Objective

Great and Little Shelford CE (A) Primary School

Calculation Policy

X ear 1Subtraction

Great and Little Shelford CE (A) Primary School

Calculation Policy

Xear 2 Subtraction

Objective	Concrete	Pictorial	Abstract
Regroup a ten into ten ones.	Use a place value chart to show how to change a ten into ten ones, use the term 'exchange'.	$20-4=$	$20-4=16$
Partition to subtract without regrouping.		Children draw representations of Base 10 and cross off.	$34-13=21$
Make ten strategy. Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead string to model counting to the next ten and the rest.	Use a number line to count on to the next ten and then the rest.	$93-76=17$

Great and Little Shelford CE (A) Primary School

Calculation Policy

Xear 3 Subtraction

Objective	Concrete	Pictorial	Abstract	
Column subtraction without regrouping.	Use Base 10 or Numicon to model.	Draw representations to support understanding.	$\begin{gathered} 47-24=23 \\ -20+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.	$\begin{array}{r} 47 \\ -24 \\ \hline 23 \\ \hline \end{array}$
Column subtraction with regrouping.	Begin with Base 10 or Numicon. Move to place value counters, modelling the exchange of a ten to ten ones.	Children may draw Base 10 or place value counters and cross off.		Begin by partitioning into place value columns. Then move to the formal method.

Great and Little Shelford CE (A) Primary School Calculation Policy

Y ear 4, 5, 6 Subtraction

Objective	Concrete	Pictorial	Abstract
Subtracting tens and ones. YL - subtract with up to 4 digits. Introduce decimal subtraction through the context of money.	$234-179$ Model process of exchange using Numicon, Base 10 and then move to place value counters.	Children to drow place value counters and show their exchange - see Y ear 3.	$-\frac{2 x^{1} 54}{15}$
Y5 - Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal.	As Year 4.	Children to drow place value counters and show their exchange - see Y ear 3.	$\begin{array}{r} { }^{2} 8^{10} x^{1081}{ }^{\circ} \\ -\quad 2128 \\ \hline 28,928 \end{array}$
Y6-Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{r} \times 810,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \text { Y原 } 5.3149 \mathrm{~kg} \\ -\quad 36.080 \mathrm{~kg} \\ \hline 69.339 \mathrm{~kg} \end{array}$

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 1 Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities using manipulatives including cubes and Numicon to demorstrate doubling \& \begin{tabular}{l}
Draw pictures to show how to double numbers.

Druble 4 is 8 .

\end{tabular} \&

\hline Counting multiples. \& Count the groups as children are skip. counting, children may use their fingers as they are skip counting. \& Children make representations to show counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |

\hline Making equal
groups and
counting the total. \& Use manipulatives to create equal groups. \& Draw and make representations.

$$
2 \times 4=8
$$ \& $2 \times 4=8$

\hline
\end{tabular}

Great and Little Shelford CE (A) Primary School

 Calculation Policy
Year 1Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Concrete \& Pictorial \& Abstract

\hline Repeated addition. \& Use different objects to add equal groups. \& Use pictorial representations, including number lines, to solve problems. \& Write addition equations to describe objects with pictures.
$$
2+2+2+2+2=10
$$

\hline Understanding arrays. \& Use objects laid out in axrays to find the answers to 2 lots of 5,3 lots of 2 etc. \& \begin{tabular}{l}
Draw representations of arrays to show understanding.

(1)

.

\end{tabular} \& \[

$$
\begin{aligned}
& 3 \times 2=6 \\
& 2 \times 5=10
\end{aligned}
$$
\]

\hline
\end{tabular}

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 2 Multiplication

Objective	Concrete	Pictorial	Abstract
Doubling	Moodel doubling using Base 10 and place value counters. Double 26 $40+12=52$	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,5$, 10 from 0 . Repeated addition.	Count the groups as children are skip counting, chuldren may use their fingers as they are skip counting Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines and bar models should be used to show representations of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Great and Little Shelford CE (A) Primary School
Calculation Policy

Xear 2 Multiplication

Objective	Concrete	Pictorial	Abstract
Multiplication is commutative.	Create arrays using counters, cubes and Numicon. Children should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representation of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication equations and reinforce repeated addition. 00000 $0 \bigcirc \bigcirc$ $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the inverse. This should be taught alongside division, so children learn how they work alongside each other.			Show all 8 related fact family equations. $\begin{array}{ll} 2 \times 4=8 & 8 \div 2=4 \\ 4 \times 2=8 & 8 \div 4=2 \\ 8=2 \times 4 & 4=8 \div 2 \\ 8=4 \times 2 & 2=8 \div 4 \end{array}$

Great and Little Shelford CE (A) Primary School Calculation Policy

Year 3 Multiplication

Great and Little Shelford CE (A) Primary School

 Calculation PolicyXear 4 Multiplication

Objective	Concrete	Pictorial	Abstract
Grid method recap from Y ear 3 for 2digits by 1 -digit. Move to multiplying 3-digit numbers by 1-digit.	See Y ear 3.	See Year 3.	See Year 3.
Column multiplication.	Children can cortinue to be supported by Base 10 and place value counters at this stage of multiplication. This is initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that children always multiply the ones first.	x 300 20 7 4 1200 80 28 The grid method may be used to show how this relates to a formal written methood. Bar modelling and number lines can support children when solving problems with multiplication alongside the formal written methods.	

Great and Little Shelford CE (A) Primary School

Calculation Policy

Xear 5, 6 Multiplication

Objective	Concrete	Pictorial	Abstract
Column multiplication for 3 and 4 digits by $1-$ digit.	See Y ear 4.	See Year 4.	See Year 4.
Column multiplication	Manipulatives may still be used with the corresponding long multiplication method modelled alongside.	Continue to use bar modelling to support problem solving.	18×3 on the first row. $(8 \times 3=24$, exchanging the 2 for 20 , then 1×3) 18×10 on the $2^{\text {nd }}$ row. Show multiplying by 10 by $\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404 \\ 12340 \\ \hline 19,744 \\ \hline 1234 \times 6) \end{array}$ putting a zero in the units first.

Great and Little Shelford CE (A) Primary School

Calculation Policy

Xear 6 Multiplication

Great and Little Shelford CE (A) Primary School

 Calculation Policy
Year 1Division

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 2 Division

Objective	Concrete	Pictorial	Abstract
Division as sharing.	See Year 1 .	Children use pictures or shapes to share guantities. $8 \div 2=4$ Children use bar modelling to show and support understanding. $12 \div 3=4$	$12 \div 3=4$
Division as grouping.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping. Think of the bar model as a whote. Split it into the number of groups you are dividing by and work out how many would be within the group. 20° \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 3 Division

Objective	Concrete	Pictorial	Abstract
Division as grouping.	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays.	Link division to multiplication by creating an array and thinking about the equations. that can be created. $\begin{array}{ll} \text { e.g. } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the arroy into groups to make multiplication and division equations.	Find the inverse of multiplication and division equations by creating eight linking equations. $\begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \\ 5=15 \div 3 & 15=5 \times 3 \\ 3=15 \div 5 & 15=3 \times 5 \end{array}$

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 3 Division

Great and Little Shelford CE (A) Primary School

 Calculation Policy
Year 4, 5, 6 Division

Objective	Concrete	Pictorial	Abstract
Divide at least 3digit numbers by Idigit. Short division.	$96 \div 3$ Use place value counters to divide using the bus stop method alongside. Start with the biggest place value, we are sharing 40 into three groups. We can put one ten in each group. and we have one left over. We exchange this ten for ten ones and then share the ones equally among the groups We look at how much is in one group so the answer is 14 .	Children can continue to use drawn diagrams with dots or circles to help. them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. 2 1 8 8 7 Move onto divisions with a remainder. $\begin{array}{rllll} & 8 & 6 \\ \hline & & & \text { r } 2 \\ 4 & 3 & 2 & & \end{array}$ Finally move into decimal places to divide the total accurately.

Great and Little Shelford CE (A) Primary School

 Calculation Policy
Year 6 Division

4 does not go into I (hundred). So combine the I hundred with the 6 tens (160).

4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

8 does not go into 3 (thousands). So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 sero times, and leaves a remainder of 7 .

$4 \longdiv { 0 4 1 \mathrm { R } 1 }$

Long Division

$$
\begin{array}{r}
h t o \\
061 \\
\hline \begin{array}{r}
247 \\
\frac{-4}{3}
\end{array}
\end{array}
$$

When dividing the ones, 4 goes into 7 one time. Multiply $\mid \times 4=4$, write that four under the 7, and subtract. This finds the remainder of 3 .
Check: $4 \times 61+3=247$

> | th h to |
| ---: |
| 0402 |
| 1609 |
| $\frac{-8}{1}$ |

When dividing the ones, 4 goes into 9 twice. Multiply $2 \times 4=8$, write that 8 under the 9 , and subtract. This finds us the remainder of 1 .
Check: $4 \times 402+1=1,609$

Great and Little Shelford CE (A) Primary School

Calculation Policy

Year 6 Division

Long Division

Step 2 - A remainder in the ters.		
I. Divide	2. Multiply and Subtract	3. Drop down the next digit
$\begin{array}{r} t{ }^{\circ} \\ 2 \frac{2}{58} \end{array}$ Two goes into 5 twice, or 5 tens $\div 2=2$ whole tens - but there is a remainder!	$\begin{gathered} \frac{10}{2} \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the 5 , and subtract to find the remainder of 1 ten.	$\begin{array}{r} 10 \\ 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover I ten. You combine the remainder ten with 8 ones, and get 18 .

I. Divide	2. Multiply and Subtract	3. Drop down the next digit
t o	t 。	t O
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
-4 4	-4	-4
18	$\begin{array}{r}18 \\ -18 \\ \hline\end{array}$	$\begin{array}{r}18 \\ -18 \\ \hline\end{array}$
	0	0
Divide 2 into 18. Place 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	This division is over since there are no more digits in the dividend. The quotient is 29 .

Great and Little Shelford CE (A) Primary School

Calculation Policy

Xear 6 Division

Long Division
 on

Step 3-A remainder in any of the place values.
I. Divide $\frac{i^{10}}{2 \sqrt{278}}$ Two goes into 2 orce, or 2 hundreds $: 2=1$ hundred.

2. Multiply and Subtract \quad 3.
$\frac{h 10}{\frac{1}{278}}$
$2 \longdiv { - 2 }$
$\frac{-2}{0}$
write that 2 under the 2, and
the remainder of rero.

Multiply $\mid \times 2=2$, write that 2 under the 2 , and
subtract to find the remainder of zero.
3. Drop down the next digit
$h 10$
$2 \longdiv { 2 7 8 }$
$-\frac{2}{0} 7$

Next, drop down the 7 of the tens next to the zero.

I. Divide	2. Multiply and Subtract	3. Drop down the next digit
$\begin{gathered} n 10 \\ 1 \frac{3}{2} \\ 2) \frac{278}{278} \\ \frac{-2}{07} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} 7+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ \frac{6}{1} \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the 1 leftover ten.

I. Divide	2. Multiply and Subtract	3. Drop down the next digit
$\begin{array}{r} n+0 \\ 139 \\ 12278 \\ \frac{-2}{07} \\ \hline-6 \\ \hline 18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	There are no more digits to drop down. The quatient is. 139 .

Great and Little Shelford CE (A) Primary School

Calculation Policy

MMathsHUBS

This poticy has been largely adapted from the White Rose Maths. Hub. Calculation Poticy with further material added. It is a working document and will be revised and amended as necessary.

